久久不卡免费播放_激情五月中文字幕_五月伊人丁香在线播放网站_黄色视频一级毛片_久草中文高清AV

您的位置:中國(guó)博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 卡塔爾哈馬德·本·哈利法大學(xué)2025年招聘博士后(AI驅(qū)動(dòng)的油藏模擬與優(yōu)化)

關(guān)注微信

卡塔爾哈馬德·本·哈利法大學(xué)2025年招聘博士后(AI驅(qū)動(dòng)的油藏模擬與優(yōu)化)

時(shí)間:2025-01-23來源:中國(guó)博士人才網(wǎng) 作者:佚名

卡塔爾哈馬德·本·哈利法大學(xué)2025年招聘博士后(AI驅(qū)動(dòng)的油藏模擬與優(yōu)化)

哈馬德·本·哈利法大學(xué)(阿拉伯文:جامعة حمد بن خليفة,英文:Hamad Bin Khalifa University)成立于2010年,是一所位于卡塔爾教育城的公立大學(xué)。

Postdoctoral Research Fellow in AI-Driven Reservoir Simulation and Optimization

College of Science and Engineering, Hamad Bin Khalifa University

Application Deadline Deadline:

01 April 2025Job Salary £75,000 to £82,000 Annual and tax-freeContact Name Contact:

Dr. Ahmad Abushaikha

Hamad Bin Khalifa University (HBKU) invites applications for a Postdoctoral Research Fellow position to join a groundbreaking project focusing on the application of advanced machine learning (ML), artificial intelligence (AI), and large language models (LLMs) to revolutionize subsurface resource characterization, reservoir behavior simulation, and future production forecasting in Qatar's oil and gas sector.

Key Responsibilities

1. Machine Learning Framework Development

Design, develop, and implement ML models for reservoir characterization:

Integrate static (e.g., geological data) and dynamic (e.g., production and well data) inputs to predict key reservoir properties such as permeability, porosity, and fault structures.

Conduct feature engineering to identify and extract relevant relationships between reservoir variables.

Optimize model training processes using advanced ML libraries (e.g., TensorFlow, PyTorch) and GPU acceleration.

Apply uncertainty quantification techniques, such as Monte Carlo simulations, to validate model reliability.

2- Artificial Intelligence and Reinforcement Learning:

Implement reinforcement learning (RL) techniques for dynamic history matching and model refinement.

Develop reward systems and optimization frameworks to improve reservoir simulation accuracy.

Conduct iterative testing and refinement of RL models based on real-world datasets.

Qualifications

Essential:

A Ph.D. in Petroleum Engineering, Computational Science, Data Science, or a related field.

Strong expertise in machine learning frameworks such as TensorFlow, PyTorch, or equivalent.

Experience with reinforcement learning methodologies and applications in real-world scenarios.

Proven track record of scientific publications in reputable journals.

Proficiency in programming languages such as Python, C++, or MATLAB.

Familiarity with high-performance computing environments and parallel programming.

Desirable:

Background in reservoir simulation and modeling.

Experience working with industry-standard tools like Schlumberger’s Intersect or Eclipse.

Knowledge of subsurface data analysis, including seismic and well log interpretation.

Expertise in uncertainty quantification and risk analysis techniques.

Experience in developing and applying LLMs for engineering applications.

Strong interpersonal and communication skills for collaborative research and mentoring.

Duration: Full-Time, Three years.

Benefits

Competitive salary commensurate with experience.

Access to state-of-the-art computational facilities.

Opportunities for professional development through collaborations with leading academic and industrial partners.

為防止簡(jiǎn)歷投遞丟失請(qǐng)抄送一份至:boshijob@126.com(郵件標(biāo)題格式:應(yīng)聘職位名稱+姓名+學(xué)歷+專業(yè)+中國(guó)博士人才網(wǎng))

中國(guó)-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,文章內(nèi)容僅供參考。

府谷县| 公主岭市| 广水市| 华亭县| 谷城县| 扎鲁特旗| 子洲县| 涿鹿县| 永清县| 缙云县| 沽源县| 吉林省| 齐齐哈尔市| 汉川市| 舞阳县| 榆树市| 酒泉市| 璧山县| 平湖市| 长阳| 澄江县| 四子王旗| 岗巴县| 巴彦县| 天台县| 广宁县| 环江| 张家界市| 西宁市| 抚顺县| 高安市| 龙游县| 深泽县| 图片| 萨迦县| 湘乡市| 谷城县| 孙吴县| 芒康县| 郎溪县| 疏勒县|